Decomposing Pointwise Finite-Dimensional Representations of the Circle Job D. Rock¹, jobrock@brandeis.edu

1. Motivation

Representations of the circle have already appeared in several areas of mathematics.

- Burghelea and Dey studied them as circular persistence modules [1].
- Igusa and Todorov studied them to construct continuous Frobenius categories [5].
- Sala and Schiffmann studied them in the context of Fock spaces and the circle quantum group [6].
- Guillermou studied them in the context of sheaves, symplectic geometry, and cotangent bundles [3].

Why study these further?

- Each of the definitions used are somewhat different from the rest. A unified definition helps ou understanding of the general structure.
- Representations of \mathbb{S}^1 will help our understanding of representations of \mathbb{A}_n quivers.
- Path algebras of \mathbb{A}_n quivers are string algebras; the study of "continuous string" algebras" remains largely unexplored territory.

2. The Circle as a Category

Definition. Choose an even number of points S in \mathbb{S}^1 (possibly 0). If $S \neq \emptyset$, index the elements counterclockwise starting with s_0 . Additionally, set $s_{|S|} = s_0$.

- If $S = \emptyset$ we give \mathbb{S}^1 the cyclic counterclockwise order.
- If $S \neq \emptyset$ the even-indexed elements of S are sinks and the odd-indexed elements are sources, inducing a partial order on \mathbb{S}^1 .

We denote the order by \leq and call this our **orientation**. Example.

Definition. Given S and \preceq , a continuous quiver of type A is a category Q. • The objects of Q are the points of \mathbb{S}^1 .

• If |S| = 0 then for each pair of distinct points $x, y \in \mathbb{S}^1$:

 $\operatorname{Hom}_Q(x,y) = \{g_{x,y} \circ \omega_x^n : n \in \mathbb{N}\} = \{\omega_y^n \circ g_{x,y} : n \in \mathbb{N}\}.$

- -Here, $g_{x,y}$ is the unique morphism from x to y that travels counterclockwise less than one rotation.
- -And, $\omega_x(\omega_y)$ is the unique map from x(y) to itself that travels around \mathbb{S}^1 once. • If $|S| \ge 2$ then for each pair of distinct points $x, y \in \mathbb{S}^1$:

$$\operatorname{Hom}_{Q}(x,y) = \begin{cases} \{g_{x,y}^{\uparrow}, g_{x,y}^{\downarrow}\} & y = s_{0}, x = s_{1}, |S| = 2\\ \{g_{x,y}\} & y \leq x\\ \emptyset & y \not\leq x. \end{cases}$$

 1 Currently at the Hausdorff Research Institute for Mathematics. Based on joint work with Eric J. Hanson: arXiv:2006.13793.

3. Representations of the Circle

Definition. Let Q be a continuous quiver of type $\widetilde{\mathbb{A}}$. A **representation** of Q is a functor V from Q to k-vector spaces. (We assume a field k has been fixed.) If V factors through finite-dimensional k-vector spaces we say V is **pointwise finitedimensional**. We will write this as **pwf** for short.

"Definition". Let V be representation of Q, a continuous quiver of type \mathbb{A} . We call \vee a string if we can parameterize V by lifting to a bounded interval of \mathbb{R} .

"Definition". Let Q be a continuous quiver of type $\widetilde{\mathbb{A}}$ and V a representation of Q. If $V(g_{x,y})$ is an isomorphism for all $x, y \in \mathbb{S}^1$ and the map obtained by "traveling" around" the circle cannot be written as a direct sum then V is a **band**. Example.

String

Theorem (Hanson-R. [4]). Let V and W be representations of a continuous quiver Q of type \mathbb{A} .

- . Suppose V and W are strings. Then $V \cong W$ if and only if they lift to the same interval of \mathbb{R} modulo 2π .
- 2. Suppose V and W are bands; let \hat{V} and \hat{W} be the "traveling around" maps for V and W, respectively. Then $V \cong W$ if and only if there is a matrix A such that $\hat{V} = A^{-1} \hat{W} A$.
- 3. If V is a string and W is a band then $V \not\cong W$.

4. Finitistic Representations

- If $|S| \ge 2$, for each $0 \le i < |S|$ let \overline{R}_i be the closed region on \mathbb{S}^1 from s_i to s_{i+1} . The interior of the region is denoted R_i .
- If |S| = 0 we just use the regions given by angles 0 to π and by angles π to 2π ; call these regions \overline{R}_0 and \overline{R}_1 , respectively. Then respective interiors are R_0 and R_1 .

Lemma (Hanson-R. [4]). Suppose W is a summand of V restricted to \overline{R}_i and the support of W is contained in R_i . Then W is a summand of V.

- Each R_i is totally-ordered.
- Crawley-Boevey proved that representations of totally-ordered sets decompose into interval indecomposables [2] (in our case, strings).
- Applied to each \overline{R}_i we have $V \cong V' \oplus \left(\bigoplus_{i=0}^{|S|-1} W_i \right)$, where each W_i is the sum of summands of V whose support is contained in R_i .

Definition. A representation V is called **finitistic** if each W_i as described is 0.

Band

Lemma (Hanson-R. [4]) A finitistic representation V partitions the continuous quiver Q into finitely-many pieces. On each piece V is constant up to isomorphism.

Thus we may "lift" V to a representation M_V of a quiver Q_V . Example.

Partition

We then examine the structure of M_V and "push it down."

Lemma (Hanson-R. [4]).

- or band representation of Q.
- representation of Q.
- Direct sums commute with "pushing down".

We now have enough to understand the summands of a pwf representation of \mathbb{S}^1 .

Theorem (Hanson-R. [4]).

- sum of string and band representations.
- only if it is either a string or band representation.

References

- 69–98, DOI: 10.1007/s00454-013-9497-x.
- (2015), no. 5, DOI: 10.1142/S0219498815500668
- https://arXiv.org/pdf/1905.07341.pdf
- arXiv:2006.13793v3 [math.RT] (2020), https://arxiv.org/pdf/2006.13793v3.pdf
- 39485-0 6.
- rnz628 (2019), DOI:10.1093/imrn/rnz268.

5. Decomposition

• A string or band representation of Q_V "pushes down" to a respective string

• An indecomposable representation of Q_V "pushes down" to an indecomposable

• A pointwise finite-dimensional representation of Q decomposes into a direct

• A pointwise finite-dimensional representation of Q is indecomposable if and

[1] D. Burghelea and T. K. Dey, Topological Persistence for Circle-Valued Maps, Discrete Comput. Geom. 50 (2013),

[2] W. Crawley-Boevey, *Decomposition of pointwise finite-dimensional persistence modules*, J. Algebra Appl. **14**

[3] S. Guillermou, Sheaves and symplectic geometry of cotangent bundles, arXiv:1905.07341v2 [math.SG] (2019),

[4] E. J. Hanson, J. D. Rock, Decomposition of pointwise finite-dimensional \mathbb{S}^1 persistence modules,

[5] K. Igusa and G. Todorov, Continuous Frobenius Categories, In: A. Buan, I. Reiten, and Ø. Solberg (eds), Algebras, Quivers and Representations, Abel Symp., vol 8., Springer, Heidelberg (2013), DOI: 10.1007/978-3-642-

[6] F. Sala and O. Schiffmann, Fock space representation of the circle quantum group, Int. Math. Res. Not. IMRN,