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Motivation. The associahedron can be viewed as the “cluster polytope” which captures
the combinatorics of type A cluster algebras [5, 4]. Representation theory of type A quivers
with continuously-many vertices yields analogous cluster structures [8, 6, 7]. The continuous
case does not yet have a related cluster algebra. We wish to strengthen the relationship
between the finite and continuous cases with a continuous analogue of the cluster polytope.

The scattering amplitude of a certain quantum field theory is treated in [1]. Those authors
realized the corresponding amplituhedron as the generalized associahedron of type A. A
continuous version is constructed in [1] as an inverse limit of the finite constructions for
type An, as n goes to infinity. We wish to construct our continuous associahedron from a
representation theoretic point of view using a continuous cluster structure. This allows us
to avoid taking the (inverse) limit of finite structures.

Finite Case. We show modified version of the technique used by the authors of [3] through
an example. Fix a field k. Consider the A5 quiver Q = [1 ← 2 → 3 → 4 ← 5] and its
augmented Auslander–Reiten quiver (augmented AR quiver).

The black bullets are isomorphism
classes of indecomposables in repkQ.
The bold black bullets and bold ar-
rows on the left make up the pro-
jective slice, we will call it Z. The
blue bullets and arrows are Z[1].
Following [3] we assign a positive
value c(M) to each indecomposable
in repkQ. We consider functions Φ,
from the indecomposables in repkQ
and Z[1] to R>0, such that, for ev-
ery Auslander–Reiten triangle X →
Y ⊕ Z → W → in Db(Q), we have

Φ(X)+Φ(W ) = Φ(Y )+Φ(Z)+c(X).

◦ ◦ ◦

• 1 • 1 • 1 •

• 1 • 1 • 1 • 1 •

• 1 • 1 • 1 •

• 1 • 1 •

• 1 • 1 • 1 •

◦ ◦ ◦

These equations are called the deformed mesh relations. (Think of the mesh relations being
deformed by c.) Notice that in the equations, Y or Z may be 0 since there are Auslander–
Reiten triangles of this form in Db(Q). The equations are building blocks to equations for
any rectangle tilted at 45◦ and contained in the augmented Auslander–Reiten quiver.
Consider two adjacent Auslander–Reiten triangles in the augmented AR quiver above:

X → Y ⊕ Z → W → and Y → W ⊕ R → T →. They yield a new distinguished triangle
X → Z ⊕ R→ T → and a new equation Φ(X) + Φ(T ) = Φ(Z) + Φ(R) + c(X) + c(Y ). We
think of this by the following mantra: “the sides are equal to the top and bottom plus the
sum of c’s on the interior.”

The space of all nonnegative Φ that satisfy the deformed mesh relations for a fixed c
yield a 5-dimensional polytope in

∐
RInd(repk Q)⊔Ind(Z[1]). This polytope encodes the same

combinatorial structure as the A5 associahedron, which in turn encodes the combinatorics
of the A5 cluster algebra.
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D and Z. We first generalize the derived category Db(Q) and the projective slice Z. We
define the k-linear triangulated category D (equivalent to Dπ in [8]) as follows. The inde-
composable objects are given by Ind(D) = R× (−π

2
, π
2
). We define shift of a point (x, y) by

(x, y)[1] = (x+ π,−y).
Notice (x, y), (x, y)[1], (x+ π

2
− y, π

2
), and (x+ π

2
+ y,−π

2
) are the corners of a rectangle in

R2. Let H(x,y) be the left sides and the interior of this rectangle. For two points X = (x, y)
and Z = (z, w), we define Hom(X,Z) to be k if Z is in the HX and 0 otherwise. Composition
is given by multiplication in k if the composition is not 0.

We define a zigzag to be a set of line segments in D that each have slope ±1 and form a
zigzag shape from the top boundary of D to the bottom boundary of D. We usually denote
such a zigzag by Z and a zigzag plays the role of the projective slice from the finite case.

(x, y)

(x, y)[1]

H(x,y)

A point (x, y), it’s shift (x, y)[1],
and H(x,y) (which includes the solid
lines but not the dashed lines).

X

Z

W

Y

A zigzag Z and its shift Z[1] in blue,
which bound Ind(CZ). Also depicted,
a tilting rectangle XYWZ.

CZ , tilting Rectangles, and c. Consider a zigzag Z and its shift Z[1] (taken point-wise).
We define the k-linear category CZ to be the full subcategory of D whose indecomposables
are those in D bounded by Z and Z[1] (inclusive) and by the boundary of D. A tilting
rectangle is a rectangle in R2 tilted at 45◦ whose interior is entirely contained in Ind(CZ).
Notice this means the top or bottom corner may not be in Ind(CZ). Now, define a function
c : Ind(CZ)→ R>0. such that c is integrable (in the analytical sense) on Ind(CZ).
Construction and Results. Fix CZ and c. Let Φ : Ind(C) → R≥0 be a function. We say
Φ satisfies the continuous deformed mesh relations if, for every tilting rectangle XYWZ in
Ind(CZ) the following equation is satisfied: Φ(X)+Φ(W ) = Φ(Y )+Φ(Z)+

∫
XY ZW

c. Notice
how this is analogous to the finite-dimensional case. We define UZ,c to be the set of Φ as
above satisfying the deformed mesh relations, called a continuous associahedron of type A.

Let X and W be in Ind(CZ). We say X and Y are T-compatible if and only if there exists
a tilting rectangle XYWZ or WYXZ. This compatibility condition yields a cluster theory
as defined in [7], which is similar to a cluster structure. A cluster theory comes with clusters
and mutation; however we do not require that every element of a cluster be mutable.
Theorem. Let UZ,c be a continuous associahedron of type A.

(1) UZ,c is convex in the sense that any line segment whose endpoints are contained in
UZ,c is entirely contained in UZ,c.

(2) If Φ satisfies the continuous deformed mesh relations and Φ(X) = 0 for each X in a
T-cluster T , then Φ is on “boundary” of UZ,c.

(3) Suppose Z has one line segment and denote by Un the associahedron of type An. There
is a sequence of embeddings U2 ↪→ U3 ↪→ · · · ↪→ Un ↪→ Un+1 ↪→ · · ·UZ,c. Embeddings
Un ↪→ Un+1 take clusters to clusters, respecting mutation. Embeddings Un ↪→ UZ,c

take clusters to T-clusters and “take” mutations to mutations of T-clusters.
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